Rotationally Invariant Texture Classification using LRTM based on Fuzzy Approach
نویسندگان
چکیده
Texture is an important spatial feature, useful for identifying objects or regions of interest in an image. One of the most popular statistical methods used to measure the textural information of images is the grey-level co-occurrence matrix (GLCM). The other statistical approach to texture analysis is the texture spectrum approach. The present paper combines the fuzzy texture unit and GLCM approach to derive a Left Right Texture Unit Matrix (LRTM). The LRTM approach considers the two sets of four connected texture elements on a 3×3 grid for evaluating the TU instead of non-connected or corner texture elements as in the case of Cross Diagonal Texture Unit Matrix (CDTM). The co-occurrence features extracted from the LRTM provide complete texture information about an image, which is useful for classification. The performance of these features for classification/discrimination of the texture images has been evaluated. The LRTM texture features are compared with original texture spectrum features in discriminating/classification of some of the VisTex natural texture images. The proposed LRTM reduces the size of the matrix from 6561 to 79 as in the case of original texture spectrum and 2020 to 79 as in the case of fuzzy texture spectrum approach. Thus it reduces the overall complexity. The experimental results indicate the efficacy of the proposed method.
منابع مشابه
Rotationally Invariant Hashing of Median Binary Patterns for Texture Classification
We present a novel image feature descriptor for rotationally invariant 2D texture classification. This extends our previous work on noise-resistant and intensity-shift invariant median binary patterns (MBPs), which use binary pattern vectors based on adaptive median thresholding. In this paper the MBPs are hashed to a binary chain or equivalence class using a circular bit-shift operator. One bi...
متن کاملRotationally Invariant Texture Features Using the Dual-Tree Complex Wavelet Transform
New rotationally invariant texture feature extraction methods are introduced that utilise the dual tree complex wavelet transform (DT-CWT). The complex wavelet transform is a new technique that uses a dual tree of wavelet filters to obtain the real and imaginary parts of complex wavelet coefficients. When applied in two dimensions the DT-CWT produces shift invariant orientated subbands. Both is...
متن کاملRotation Invariant Texture Classification using Fuzzy Logic
In this paper, we develop a scale invariant texture classification method based on Fuzzy logic. It is applied for the classification of texture images. Texture is a common property of any surface having uncertainty. Two types of texture features are extracted one using Discrete Wavelet Transform (DWT) and other using Co-occurrence matrix. Co-occurrence features are obtained using DWT coefficien...
متن کاملTexture classification with textons A Statistical Approach to Texture Classification from Single Images
We investigate texture classification from single images obtained under unknown viewpoint and illumination. A statistical approach is developed where textures are modelled by the joint probability distribution of filter responses. This distribution is represented by the frequency histogram of filter response cluster centres (textons). Recognition proceeds from single, uncalibrated images and th...
متن کامل